

Radio Thermostat Company of America

Wi-Fi USNAP Module API

Version 1.3

March 22, 2012

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 1

Date Author Revision Changelog

23 Mar 2011 Dan Goodman V1.0 • Initial Release

23 Feb 2012 Dan Goodman V1.2 • Add it_heat/it_cool

• Add Remote Temperature

22 Mar 2012 Craig Heffernan V1.3 • Add program_mode and ttarget thermostat
attributes

• Add mode attribute to thermostat pma resource

• Add the following thermostat resources

o Lock mode

o Simple mode

o Save energy

o Temperature swing

o Night light

o Temperature differential

o Stage delay

o Fan circulation time

o Humidity

o Humidity Setpoint

o Dehumidifier

o External dehumidifier

o Time format

o Air baffle

o Humidifier

o HVAC Setttings

LEGAL ADVISORY : Use of the Radio Thermostat Company of America Wi-Fi USNAP Module API (“Local API”) is
subject to the restrictions set forth in the Terms of Use set forth on the following webpage:
http://radiothermostat.com/documents/RTCOA%20API%20Terms%20of%20Use%20033011.pdf. Without limiting the
generality of the foregoing, you may not use the Local API for commercial purposes or modify, copy, distribute, transmit,
display, perform, reproduce, publish, license, create derivative works from, transfer, or sell the Local API or any
information, software, products or services related thereto unless expressly permitted in writing by Radio Thermostat
Company of America. Use of the Local API beyond the scope of authorized access granted pursuant to said Terms of
Use immediately terminates your right to use the Local API, and may render you liable for damages and injunctive relief
in a court of law.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 2

Table of Contents
Table of Contents 2

1 Introduction ... 1

1.1 Resource Model and Data Format ... 1

1.2 Guidelines for using the API .. 2

2 Thermostat API ... 4

2.1 Introduction .. 4

2.2 Thermostat Resource .. 4

2.2.1 Thermostat API Version .. 4

2.2.2 Thermostat Resource Data Representation .. 4

2.2.3 Thermostat Program Resource ... 7

2.2.4 Thermostat Model .. 7

2.2.5 Thermostat LED .. 7

2.2.6 Thermostat Messaging Areas .. 8

2.2.7 Thermostat Remote Temperature ... 9

2.2.8 Thermostat Lock Mode .. 9

2.2.9 Thermostat Simple Mode .. 9

2.2.10 Thermostat Save Energy ... 10

2.2.11 Thermostat Temperature Swing .. 10

2.2.12 Thermostat Night Light .. 10

2.2.13 Thermostat Temperature Differential ... 11

2.2.14 Thermostat Stage Delay .. 11

2.2.15 Thermostat Fan Circulation Time .. 11

2.2.16 Thermostat Humidity ... 11

2.2.17 Thermostat Humidifier Setpoint ... 12

2.2.18 Thermostat Humidifier ... 12

2.2.19 Thermostat Dehumidifier ... 12

2.2.20 Thermostat External Dehumidifier ... 12

2.2.21 Thermostat Time Format ... 13

2.2.22 Thermostat Air Baffle ... 13

2.2.23 Thermostat HVAC Settings ... 14

2.3 System Resource .. 15

2.3.1 Basic system information ... 15

2.3.2 System Service.. 15

2.3.3 System Name .. 16

2.3.4 System Command Handler ... 16

2.3.5 System Operating Mode .. 16

2.3.6 Network Configuration ... 17

2.4 Deprecated APIs .. 17

2.5 Using the API with Curl .. 18

2.5.1 Get Thermostat State .. 18

2.5.2 Set target heat temperature to 72 in HEAT mode ... 18

2.5.3 Set target heat temperature to 74 and enable hold ... 18

2.5.4 Set target cool temperature to 80 .. 18

2.5.5 Set fan mode to ON ... 18

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 3

2.5.6 Get Heat Program Information for Monday .. 18

2.5.7 Get Heat Program Information for the Whole Week .. 18

2.5.8 Update Cool Program for Tuesday .. 19

2.5.9 Get the Thermostat Model and Firmware Version ... 19

2.5.10 Get basic system information .. 19

2.5.11 Set system name ... 19

2.5.12 Get system mode .. 19

2.5.13 Reboot system... 20

2.5.14 Get services list ... 20

2.6 Limitations and Caveats... 21

2.6.1 Concurrent Connections .. 21

2.6.2 Chunked encoding... 21

2.6.3 Interaction between t_heat, t_cool and t_mode ... 21

2.6.4 Differences in behavior with firmware version ... 22

2.7 Success and Error Codes .. 22

2.7.1 Invalid URI ... 22

2.7.2 Common Scenarios ... 22

2.7.3 Thermostat API Errors ... 22

3 Marvell Service Discovery Protocol .. 23

3.1 Introduction .. 23

3.2 Specification .. 23

3.2.1 Message Types: .. 23

3.2.2 Protocol Version .. 23

3.2.3 Services ... 23

3.2.4 Service Matching ... 24

3.2.5 Message Flow ... 24

3.2.6 Message Formats .. 24

3.3 Limitations and Caveats... 25

3.4 Example Program to discover a service .. 25

3.4.1 Source Code ... 25

3.4.2 Building and executing the sample program .. 29

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 1

1 Introduction
The Radio Thermostat API is an HTTP API that enables client programs to query the thermostat state, and to
manage/control the thermostat operation. In the HTTP terminology, the thermostat will be a server that will respond to
HTTP requests from client devices. The API is designed with a RESTful architecture in mind.

The API is expected to be used by a variety of client applications such as graphical interface applications running on
Windows, MAC, or iOS devices. It can also be used by programs such as curl to facilitate control via non-interactive
client applications. Further, the HTTP GET APIs can be exercised using a browser.

The Radio Thermostat API provides a set of operations on a typical thermostat device and has been designed to be
independent of the underlying implementation of the thermostat. This document is intended for use with the Radio
Thermostat Application Developer’s Guide.

The API described in this document is for firmware version 1.04.82 (and above)
and System API version 113 and Thermostat API versi on 100. This firmware
can be used with Radio Thermostat’s CT80 Rev A v2.1 8, CT-30e v1.75, 3M50
v1.09, and CT80 Rev B v1.00 and later thermostats. Please upgrade to firmware
version 1.04.82, or later, before using this API.

1.1 Resource Model and Data Format
The API is built around a resource model for the thermostat following the RESTful architecture paradigm. The general
idea is the following:

• Each resource is represented by a URI

• The HTTP operation GET retrieves a (JSON) representation of the resource.

• The HTTP operation POST updates the resource and assumes a JSON representation of the resource as
the values to be updated.

• HTTP 1.1 is supported except for features explicitly mentioned as not supported.

Note

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 2

1.2 Guidelines for using the API
Radio Thermostat Company of America anticipates that over time, client applications will be required to support an
installed base of devices that consist of multiple device models, where not all devices will support the most recent API
versions. This API provides methods to query detailed version information of a device that includes the device model,
the firmware version, and the wireless software version in addition to the API version. Client applications should use
the detailed version information to dynamically determine the appropriate API to use while communicating with a
particular device.
Any client using this API should follow these guidelines for using the API. These guidelines help in ensuring that the
client application continues to work with later versions of the API.

• The API will continue to evolve as enhanced functionality is included with the API. These revisions to the
API will be identified by the API version specification. Changes to the API include (but are not restricted to)
the following:

o New resources (URIs) could be added
o New elements could be added to responses of GET and POST methods
o Error codes are likely to be added and refined. Applications should be prepared to handle new error

codes.
• Incremental API releases within a major API release will maintain backward compatibility. Care will be taken

that applications using the older versions of the API do not break, provided they adhere to these guidelines.
What this implies is:

o The published resources (URIs) will continue to be accessible in all versions of the API for
incremental API releases.

o Various fields within the representation of these resources will carry the same meaning in all
versions of the API.

o No fields will be deleted from the HTTP GET response of a resource, although new fields may be
introduced.

o A POST with a published set of fields on a URI will always result in the same state transitions
(effects) at the server end.

• Applications should not expect strict ordering of individual fields within a response. For example,

{ “x”: 1, “y”: 2 } is equivalent to { “y”: 2, “x”: 1 }

The applications using this API should consider both the above representations to be equivalent.

• Applications should ignore any other fields in the response that it does not understand. For example, in a
hypothetical representation with versions, APIv1 and APIv2:

APIv1:
{ “x”: 1, “y”:2 }

APIv2:
{ “x”: 1, “y”: 2, “z”:3 }

An application that is implemented for APIv1 should work properly with APIv2 as well. Since the application
is not aware of the field z and its semantics, it should silently ignore that field.

• If parsing arrays, the applications should ignore any additional indices in the array that they are not aware of.
For example, in a hypothetical representation with versions, APIv1 and APIv2:

APIv1:
[[“Sunday”, “27”],
 [“Monday”, “28”],
 [“Tuesday”, “29”],
]
APIv2:
[[“Sunday” , “27”, “Cloudy”],

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 3

 [“Monday”, “28”, “Rainy”],
 [“Tuesday”, “29”, “Sunny”],
]

An application that is implemented for APIv1 should work properly with APIv2. Since the application is not
aware of the third index in the array (weather prediction, in this case), it should ignore that.

• If parsing arrays with header, applications should read the header to understand the relative positions of
elements within the array. Applications should ignore any columns that they do not understand. For
example, in a hypothetical representation with versions, APIv1 and APIv2:

APIv1:
[[“date”, “day”],
 [“21-10-2010”, “Sunday”],
 [“24-11-2010”, “Monday”],
]

APIv2:
[[“time”, “day”, “date”],
 [“12:00”, “Sunday”, “21-10-2010”],
 [“15:30”, “Monday”, “24-11-2010”],
]

An application that is implemented for APIv1 should work properly with APIv2 as well. Since the application
is not aware of the field time in the headers, it should ignore that column. The application should also infer
the indices of the days and date based on the headers mentioned.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 4

2 Thermostat API

2.1 Introduction
The thermostat API consists of three types of base resources, a) thermostat, b) system and c) cloud.

2.2 Thermostat Resource
The thermostat resource is a top-level composite resource that is used to retrieve current state of the thermostat and
update its state (i.e., control the thermostat operation.)

The location of the thermostat resource is at http://< ip-address>/tstat . This location is returned as part of the service
discovery protocol.

The thermostat resource provides a representation for most of the common attributes of a thermostat including the
room temperature, operating mode, temperature setpoint (target). A client device typically polls the current state of
the thermostat using the HTTP GET operation on the thermostat resource, and can use up to date thermostat state
information to maintain its own internal representation of the current state of the thermostat. Likewise, a POST on the
thermostat resource can be used to change the operating mode, establish new temperature setpoints, etc.

2.2.1 Thermostat API Version
The thermostat API version defines the API version that this device will use. This document is for Thermostat
API version 100.

 Table 1: Data Representation of Thermostat Version

2.2.2 Thermostat Resource Data Representation
The thermostat resource encapsulates the following attributes.

 Table 2: Data Representation for Thermostat Resour ce

Attribute Description GET POST Data Format

temp Current temperature X Floating point representing value
in degrees Fahrenheit.

tmode Thermostat operating
mode

X X Integer value:

0: OFF
1: HEAT
2: COOL
3: AUTO

fmode Fan operating mode X X Integer value:
0: AUTO
1: AUTO/CIRCULATE
2: ON

override Target temperature
temporary override

X Integer value:
0: Override is disabled

Attribute Description GET POST Data Format

Version Thermostat API
version

X Integer representing the version
number of the thermostat API
supported by the device.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 5

Attribute Description GET POST Data Format

status 1: Override is enabled.
Note: Firmware versions prior to
1.04 can return any non-zero
value if override is enabled.

hold Target temperature
Hold status

X X Integer value:
0: Hold is disabled
1: Hold is enabled

t_heat Temporary Target
Heat Setpoint: Sets
target and MODE

X X Floating point representing
temperature value in degree
Fahrenheit.#

t_cool Temporary Target
Cool Setpoint: Sets
target and MODE

X X Floating point representing
temperature value in degree
Fahrenheit.#

it_heat Temporary Target
Heat Setpoint

X X Floating point representing
temperature value in degree
Fahrenheit.

It_cool Temporary Target
Cool Setpoint

X X Floating point representing
temperature value in degree
Fahrenheit.

a_heat Absolute Target Heat
Setpoint

X X Floating point representing
temperature value in degree
Fahrenheit.

a_cool Absolute Target Cool
Setpoint

X X Floating point representing
temperature value in degree
Fahrenheit.

a_mode Absolute Target
Temperature Mode

 X Integer representing the absolute
target temperature mode.

0 – Disable Absolute Target
Temperature Mode

1– Enable Absolute Target
Temperature Mode

t_type_post Target Temperature
POST type

X Integer value that indicates
whether a POST on
t_heat/t_cool will result in
temporary or absolute
temperature change.

0: Temporary Target
Temperature

1: Absolute Target Temperature

2: Unknown

This attribute is deprecated and
will be obsoleted in future
versions of the API.#

tstate HVAC Operating
State

X Integer value:
0: OFF
1: HEAT
2: COOL
Note: This functionality may not

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 6

Attribute Description GET POST Data Format

be available in all models of the
thermostat.

fstate Fan Operating State X Integer value:
0: OFF
1: ON
Note: Only available with CT-30

time Thermostat’s internal
representation of time

X X JSON object with the following
fields: day, hours, minutes.
day: Integer value representing
the day of the week, with day 0
being Monday.
hour : Integer value representing
number of hours elapsed since
midnight.
minutes : Integer value
representing number of minutes
since start of the hour.

program_mode Program Mode X X Integer representing the current
program mode:*

0: Program A

1: Program B

2: Vacation

3: Holiday

ttarget Current operating
target

X Integer representing the current
target operating mode. For
example, if the thermostat is in
AUTO mode and operating
toward a cool target, then this
value will be 2.

Valid values:

0: Off

1: Heat

2: Cool

- The default behavior of POST on t_heat and t_cool is to update the temporary target temperature. Some
custom flavors of the firmware update the absolute target temperature when t_heat or t_cool values are
updated. This distinction can be made by referring to the t_type_post attribute. This differing behavior is
deprecated and will be obsoleted in future versions of the API. No comment can be made about whether the
t_heat/t_cool data returned in a GET /tstat/ response indicates temporary or absolute target temperatures.

* - Some thermostat models may not support all program modes.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 7

2.2.3 Thermostat Program Resource
The thermostat maintains two programs – a heat program and a cool program. Every program entry consists
of time and the corresponding temperature setpoint. Every day of the week can have a set of time-setpoint pair
programmed in the thermostat.

2.2.3.1 Thermostat Program for a Day
The thermostat program for a single day (for either the heat or cool) mode can be accessed directly
using a URI as follows:

• http://<ip-address>/tstat/program/<mode>/<day>

where <mode> is either heat or cool. The <day> is one of mon, tue, wed, thu, fri, sat, or sun.

 Table 3: Data Representation for program for a d ay resource

Data Format Explanation

“d”:[a1, b1, a2, b2, a3, b3, …] Where:

value of d is one of 0, 1, 2, 3, 4, 5, 6
representing mon, tue, wed, thu, fri, sat and
sun respectively.

value of a<i> is the time expressed as minutes
from the start of the day (Integer)

value of b<i> is the temperature at time a<i>
expressed in degree Fahrenheit (Floating
point)

2.2.3.2 Thermostat Program for a week
The programs for the entire week are also available at the following URI’s:

• http://<ip-address>/tstat/program/heat

• http://<ip-address>/tstat/program/cool

Each of the heat or cool programs consists of one program for each day of the week. The data
format of the response consists of all the attributes corresponding to the days of the week, from 0
to 6. The rest of the format is as explained in Section 2.2.2.1.

2.2.4 Thermostat Model
The thermostat model resource is a string that provides the model number and firmware version of the
thermostat. The thermostat model resource is available at:

• http://<ip-address>/tstat/model

 Table 4: Data Representation of Thermostat Model

Attribute Description GET POST Data Format

Model Thermostat model
and version

X String representing the model
and version number.

2.2.5 Thermostat LED
The thermostat LED resource provides control over the LEDs available on the thermostat. The thermostat led
resource is available at:

• http://<ip-address>/tstat/led

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 8

 Table 5: Data Representation of Thermostat LED

Attribute Description GET POST Data Format

energy_led Energy LED Status
Code

 X Integer that represents:

0 – Off

1 – Green

2 – Yellow

4 – Red

Note: The LED state is volatile. The state of the LED may change when the WiFi module or the thermostat
reboots, or when the thermostat modifies it to show energy status.

2.2.6 Thermostat Messaging Areas
The thermostats typically have one of two types of messaging areas, Price Messaging Area (PMA) and User
Messaging Area (UMA). Some models may not have a messaging area. The thermostat messaging areas
resource allows control of these user areas. The thermostat messaging area resources are available at:

• http://<ip-address>/tstat/pma

• http://<ip-address>/tstat/uma (Only available on CT80)

 Table 6: Data Representation of Thermostat User Me ssaging Area (uma)

Attribute Description GET POST Data Format

line The line no. of the
messaging area

 X Integer representing the line
number to write to.

Valid Values: 0, 1

message The message to be
displayed

 X String containing the desired
message to display.

 Table 7: Data Representation of Thermostat Price M essaging Area (pma)

Attribute Description GET POST Data Format

line The line no. of the
messaging area

 X Integer representing the line
number to write to.

Valid Values: 0, 1, 2, 3

message The message to be
displayed

 X String containing the desired
message to display.

Note: The PMA can only display
numbers

mode Enable/Disable
control for uma and
pma

 X Integer Value:

0 = Disable

2 = Enable

Note: The PMA/UMA state is volatile. Their state may change when the WiFi module or the thermostat
reboots, or when the thermostat modifies it to show updates.

Note: If a message field is specified the UMA/PMA is automatically turned on regardless of the value of mode.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 9

2.2.7 Thermostat Remote Temperature
The thermostat remote temperature resource is used to control the remote temperature settings of the
thermostat. The thermostat remote temperature resource is available at:

• http://<ip-address>/tstat/remote_temp

 Table 8: Data Representation of Thermostat Remote Temperature

Attribute Description GET POST Data Format

rem_mode Remote Temperature
Mode

X X Integer representing the current
remote temperature mode of the
thermostat (1 – enabled, 0 –
disabled).

For POST, the only valid value is
0, which disables the remote
temperature mode.

rem_temp The message to be
displayed

 X Integer representing the value of
the remote temperature in
Fahrenheit. The remote
temperature will take the place of
the ambient temperature as read
by the local thermostat
temperature sensor.

A valid POST to this attribute
automatically sets the remote
temperature mode to 1.

2.2.8 Thermostat Lock Mode
This resource is available at:

• http://<ip-address>/tstat/lock

 Table 9: Data Representation of Thermostat Lock Te mperature

Attribute Description GET POST Data Format

lock_mode Thermostat Lock
Mode

X X Integer that represents:
0 = lock disabled
1 = partial lock
2 = full lock
3 = utility lock (accessible via the
radio only)

2.2.9 Thermostat Simple Mode
This resource is available at:

• http://<ip-address>/tstat/simple_mode

 Table 10: Data Representation of Thermostat Simple Mode

Attribute Description GET POST Data Format

simple_mode Thermostat Simple
Mode

X X Integer value:
1 = normal mode
2 = simple mode

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 10

2.2.10 Thermostat Save Energy
This resource is available at:

• http://<ip-address>/tstat/save_energy

 Table 11: Data Representation of Thermostat Save E nergy

Attribute Description GET POST Data Format

mode Thermostat save
energy mode

X X Integer value:
0 = disable
1 = enable

type Save energy mode
type

X X Integer value:
1 = Adjust target by delta
2 = Go to least consuming point
in the running program
3 = Save energy absolute
setpoint

Delta Save energy
temperature delta

X X Available only when mode and
type are 1
Float value:
0.5 degree increments with a
valid temperature range from 1
to 9 degrees.

2.2.11 Thermostat Temperature Swing
This resource is available at:

• http://<ip-address>/tstat/tswing

 Table 12: Data Representation of Thermostat Temper ature Swing

Attribute Description GET POST Data Format

tswing Thermostat
temperature swing

X X Float value 0.5 degree
increments with a valid
temperature range from 0.5 to
3.0 degrees F.

2.2.12 Thermostat Night Light
This resource is available at:

• http://<ip-address>/tstat/night_light

 Table 13: Data Representation of Thermostat Night Light

Attribute Description GET POST Data Format

intensity Thermostat night light
intensity

X X Integer value:
0 = off
1 = 25%
2 = 50%
3 = 75%
4 = 100%

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 11

2.2.13 Thermostat Temperature Differential
This resource is available at:

• http://<ip-address>/tstat/cool
• http://<ip-address>/tstat/heat

 Table 14: Data Representation of Thermostat Temper ature Differential

Attribute Description GET POST Data Format

temp_diff Thermostat
temperature
differential

X X Float value 1.0 degree
increments with a valid
temperature range from 2.0 to
6.0 degrees F.

2.2.14 Thermostat Stage Delay
This resource is available at:

• http://<ip-address>/tstat/stage_delay

 Table 15: Data Representation of Thermostat Stage Delay

Attribute Description GET POST Data Format

stage_delay Thermostat stage to
stage delay

X X Integer value:
0 to 60 minutes

2.2.15 Thermostat Fan Circulation Time
This resource is available at:

• http://<ip-address>/tstat/fan_ctime

 Table 16: Data Representation of Thermostat Fan Ci rculation Time

Attribute Description GET POST Data Format

fan_ctime Thermostat fan
circulation time

X X Integer value:
1 to 9 minutes

2.2.16 Thermostat Humidity
This resource is available at:

• http://<ip-address>/tstat/humidity

 Table 17: Data Representation of Thermostat Humidi ty

Attribute Description GET POST Data Format

humidity Current humidity
value

X Float value:
Value is % relative humidity from
0 to 100%

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 12

2.2.17 Thermostat Humidifier Setpoint
This resource is available at:

• http://<ip-address>/tstat/thumidity

 Table 18: Data Representation of Thermostat Humidi fier Setpoint

Attribute Description GET POST Data Format

thumidity Current humidifier
setpoint value

X X Float value:
Value is % relative humidity from
0 to 100%

2.2.18 Thermostat Humidifier
This resource is available at:

• http://<ip-address>/tstat/humidifier

 Table 19: Data Representation of Thermostat Humidi fier

Attribute Description GET POST Data Format

humidifier_mode Thermostat humidifier
mode

X X Integer Value:
0 = off
1 = run only with heat
2 = humidity anytime (runs fan)

2.2.19 Thermostat Dehumidifier
This resource is available at:

• http://<ip-address>/tstat/dehumidifier (Only available on CT80)

 Table 20: Data Representation of Thermostat Dehumi difier

Attribute Description GET POST Data Format

mode Dehumidifier mode X X Integer value:
0 = off
1 = on with fan
2 = on without fan

setpoint Dehumidifier setpoint X X Integer value:
Relative humidity from 20 to 90
in percentage

2.2.20 Thermostat External Dehumidifier
This resource is available at:

• http://<ip-address>/tstat/ext_dehumidifier (Only available on CT80)

 Table 21: Data Representation of Thermostat Extern al Dehumidifier

Attribute Description GET POST Data Format

mode External dehumidifier
mode

X X Integer value:
0 = off
1 = Humidistat with thermostat
2 = Always with AC

setpoint External dehumidifier
setpoint

X X Integer value:
Relative humidity from 20 to 90
in percentage

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 13

2.2.21 Thermostat Time Format
This resource is available at:

• http://<ip-address>/tstat/time/format

 Table 22: Data Representation of Thermostat Time F ormat

Attribute Description GET POST Data Format

format Time display format X X Integer value:
1 = 12 hour format (AM/PM)
2 = 24 hour format

2.2.22 Thermostat Air Baffle
This resource is available at:

• http://<ip-address>/tstat/air_baffle

 Table 23: Data Representation of Thermostat Air Ba ffle

Attribute Description GET POST Data Format

baffle_mode External air baffle
mode

X X Integer value:
0 = External air baffle closed
1 = External air baffle opened
temporarily
2 = External air baffle opened
permanently (set by radio bus
only)

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 14

2.2.23 Thermostat HVAC Settings
This resource is available at:

• http://<ip-address>/tstat/hvac_settings

There are two formats for this resource, one for the 3m50/CT30 and one for the CT80

 Table 24: Data Representation of Thermostat HVAC S ettings (3m50)

Attribute Description GET POST Data Format

pump Normal/Pump X Integer Value:
1 = Normal
2 = Heat Pump

aux_type Auxiliary type is
Gas/Electric

X Integer value:
If Normal:
1 = Heat source is Gas
2 = Heat source is Electric
If Heat Pump:
1 = Auxiliary is Gas
2 = Auxiliary is Electric

hvac_code HVAC Setting
Code

X Integer value:
For Normal:
1 = 1 stage heat, 1 stage cool
2,4 = 2 stage heat, 1 stage cool
3,5 = 2 stage heat, 2 stage cool
For Heat Pump:
10,11 = 1 stage pump, 1 stage aux
12 = 1 stage pump, no aux

Table 25: Data Representation of Thermostat HVAC Se ttings (CT80)

Attribute Description GET POST Data Format

pump Normal/Pump X Integer Value:
1 = Normal
2 = Heat Pump

aux_stages Auxiliary Stages X Integer Value:
If Heat Pump, this value is encoded
as the number of auxiliary stages.
If Normal, this value is encoded as
the number of heat stages.

aux_type Auxiliary type is
Gas/Electric

X Integer value:
If Normal:
1 = Heat source is Gas
2 = Heat source is Electric
If Heat Pump:
1 = Auxiliary is Gas
2 = Auxiliary is Electric

heat_stages Heat pump stages X Integer Value:
Number of heat pump stages

cool_stages Cool stages X Integer Value:
Number of cool stages

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 15

2.3 System Resource

2.3.1 Basic system information

 Table 26: Data Representation of /sys

URI GET POST Data Format

/sys X The data returned has the following information:

UUID: unique identifier for the device (String)
api_version : HTTP API version. This specification is for
api_version=113. (Integer)
fw_version : Firmware version (String)
wlan_fw_version : Underlying WLAN firmware version (referred
from WiFi-certification documentation)(String)

Example: { "uuid": "0021e82d978f",

 "api_version":113,

 "fw_version":"1.04.64",

 "wlan_fw_version":"v10.105576"

 }

2.3.2 System Service

 Table 27: Data Representation of /sys/services

URI GET POST Data Format

/sys/services X The data returned has the following information:

services_names : A list of service names available on the device. This
is the same as that announced on the SSDP protocol by this device.
This is returned as a JSON array of strings. Each member of the array
identifies one service.

httpd_handlers : A list of all the URIs that are available along with the
kind of operations (GET/POST) available on them. This is returned as
JSON attribute-value pairs of the form “u1”:[a1, b1] where,

ui : the URI

ai: 1-GET is allowed, 0-GET is not allowed

bi : 1-POST-allowed, 0-POST is not allowed

Note that while all the URIs on the /sys/ resource are listed, only the
top-level URIs of other resources are listed.

Example:

{

"service_names": [

 "com.rtcoa.tstat:1.0",

 "devices.controller.tstat:1.0"

],

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 16

URI GET POST Data Format

"httpd_handlers":{

 "/tstat":[1,1],

 “/cloud”: [1,1],

 "/sys/network":[1,1],

 “/sys/updater":[0,1],

 "/sys/filesystem":[0,1],

 "/sys/firmware":[0,1],

 "/sys/fs-image":[0,1],

 "/sys/fw-image":[0,1],

 "/sys/command":[0,1],

 "/sys/services":[1,0],

 "/sys/mode":[1,1],

 "/sys/name":[1,1],

 “/sys/reboot”:[1,1],

 }

}

2.3.3 System Name

 Table 28: Data Representation of /sys/name

URI GET POST Data Format

/sys/name X X name : Descriptive system name for easy identification(String)

Example: {"name":"thermostat-2D-97-8F"}

2.3.4 System Command Handler

 Table 29: Data Representation of /sys/command

URI GET POST Data Format

/sys/command X command : Command to be issued to command handler.
Currently only “reboot” command is supported. (String)

2.3.5 System Operating Mode

 Table 30: Data Representation of /sys/mode

URI GET POST Data Format

/sys/mode X X mode : Indicates system operating mode. 0 – provisioning, 1 –
normal (Integer)

Example: {"mode": 0}

• A POST with the value of mode as 0, resets the device
back into provisioning mode.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 17

2.3.6 Network Configuration

 Table 31: Data Representation of /sys/network

URI GET POST Data Format

/sys/network X For GET:
The network information consists of the following attributes in
JSON format
ssid (String): SSID of the configured network
bssid (String): BSSID of the configured network
channel (Integer): WLAN Radio Channel
security (Integer): Security mode as defined in /sys/scan
ip (Integer): Indicates whether IP address is configured via
DHCP or statically assigned. 0 – static, 1 – dhcp.
ipaddr (String): IP address
ipmask (String): Subnet mask
ipgw (String): Gateway
ipdns1 (String): Primary DNS Server#
ipdns2 (String): Secondary DNS Server#
rssi (String): Signal Strength

(Note: API versions before v112 included the passphrase member in the GET response. This has been
discontinued for later versions of the API.)

2.4 Deprecated APIs
The following APIs have been deprecated from earlier versions:

• /sys/info

• /cloud/url

• /cloud/authkey

• the t_type_post field in the /tstat/ resource

• the behavior that sets absolute target temperatures in response to t_heat and t_cool fields in the /tstat/
resource

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 18

2.5 Using the API with Curl
The easiest way to explore the API is using curl command-line program that can be used to do both GET and POST
operations. The following examples illustrate some common use-cases.

2.5.1 Get Thermostat State
The most common operation is to retrieve the current dynamic state of the thermostat resource.

$ curl http://192.168.1.101/tstat

{"temp":76.50,"tmode":2,"fmode":0,"override":0,"hol d":0,"t_cool":85.00,"time":{"d
ay":6,"hour":12,"minute":54}}

2.5.2 Set target heat temperature to 72 in HEAT mod e
The following curl command will set the thermostat operating mode to HEAT and the target heat temperature
to 72.

$ curl -d '{"tmode":1,"t_heat":72}' http://192.168. 1.101/tstat

{“success”: 0}

2.5.3 Set target heat temperature to 74 and enable hold
The following curl command switches the thermostat to HEAT mode, enables hold state, and sets the target
temperature to 74.

$ curl -d '{"tmode":1,"t_heat":74,"hold":1}' http:/ /192.168.1.101/tstat

{“success”: 0}

2.5.4 Set target cool temperature to 80
The following curl command sets the thermostat operating mode to COOL, enables temporary override, and
sets the target temperature to 80.

$ curl -d '{"tmode":2,"t_cool":80}' http://192.168 .1.101/tstat

{“success”: 0}

2.5.5 Set fan mode to ON
The following curl command sets the fan mode to ON.

$ curl -d '{"fmode":2}' http://192.168.1.101/tstat

{“success”: 0}

2.5.6 Get Heat Program Information for Monday
The following command retrieves the heat program for Monday (day 0). The values in the program are: 70
degrees at 12:50 AM (50 minutes into the day), 71 degrees at 1:40 AM (100 minutes into the day), and so on.

$ curl http://192.168.1.101/tstat/program/heat/mon

{"0":[50,70,100,71,150,72,200,73]}

2.5.7 Get Heat Program Information for the Whole We ek
$ curl http://192.168.1.101/tstat/program/cool

{"0":[450,80,550,90,650,100,750,95],"1":[360,78,480 ,85,1080,78,1320,82],"2":[360,
78,480,85,1080,78,1320,82],"3":[360,78,480,85,1080, 78,1320,82],"4":[360,78,480,85
,1080,78,1320,82],"5":[360,78,480,85,1080,78,1320,8 2],"6":[360,78,480,85,1080,78,
1320,82]}

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 19

2.5.8 Update Cool Program for Tuesday
$ curl -d '{"1":[120,80,240,81,360,82,480,83]}'
http://192.168.1.101/tstat/program/cool/tue

{“success”: 0}

In the above POST message, index “1” corresponds to the day Tuesday. Note that the index and the day
specified (Tuesday) in the URL must match.

This POST message programs the cool settings for Tuesday as follows.

2am: 80 degrees
4am: 81 degrees
6am: 82 degrees
8am: 83 degrees

2.5.9 Get the Thermostat Model and Firmware Version
$ curl http://192.168.1.101/tstat/model

{"model":"CT80 V2.14T"}

The above shows that the thermostat is a CT-80 running thermostat firmware version v2.14T. Note that the
thermostat firmware version is different from the firmware version running on the USNAP Wi-Fi module.
Together, the thermostat model and thermostat firmware version enable the application developer to correctly
utilize model specific features for a particular device. In general, an application developer should use all of the
following version indicators to program a particular device correctly:

1. Thermostat model and Thermostat firmware version information as returned by the /tstat/model
command. These provide an insight into the capabilities of the hardware.

2. Thermostat API version information as returned by the /tstat/version command. This provides
information on the thermostat operations supported by a particular version of the USNAP WiFi
firmware.

3. The thermostat System API version information as returned by the /sys command in the
api_version field. This provides insight into the system level capabilities supported by a particular
version of the USNAP WiFi firmware.

2.5.10 Get basic system information
$ curl http://192.168.1.101/sys

{"uuid":"0021e82d94e4","api_version":113,"fw_versio n":"1.04.64","wlan_fw_version"
:"v10.105576"}

The above command fetches the basic state of the system

2.5.11 Set system name
The following command names the device as “tstat-livingroom”.

$ curl -d '{"name":"tstat-livingroom "}' http://192 .168.1.101/sys/name

{"success": 0}

The default value for name is "thermostat-xy-za-bc". Where xy-za-bc represent the last 6 hexadecimal digits of
the MAC address of the thermostat.

2.5.12 Get system mode
$ curl http://192.168.1.101/sys/mode

{"mode":1}

The above response indicates that the system is in “normal” mode.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 20

2.5.13 Reboot system
The following command reboots the system.

$ curl -d '{"command":"reboot"}' http://192.168.1.1 01/sys/command

{"success": 0}

2.5.14 Get services list
The following command retrieves the list of services available on the device:

$ curl http://192.168.1.101/sys/services

{"service_names":["com.rtcoa.tstat:1.0","devices.co ntroller.tstat:1.0"],"
httpd_handlers":{"/tstat":[1,1], "/cloud": [1,1],
"/sys/network":[1,1],"/sys/updater":[0,1],"/sys/fs- image":[0,1],"/sys/fw-
image":[0,1], "/sys/command":[0,1], "/sys/services" :[1,0],
"/sys/mode":[1,1], "/sys/name":[1,1]}}

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 21

2.6 Limitations and Caveats

2.6.1 Concurrent Connections
The web server is single threaded and connection requests are processed serially. Thus a new connection
request is processed only after an existing connection has been terminated.

2.6.2 Chunked encoding
Chunked encoding is NOT supported by the web server.

2.6.3 Interaction between t_heat, t_cool and t_mode
The thermostat resource has two temperature setpoints: t_heat and t_cool (for heat and cool setpoints).
Depending on the current operating mode, either the heat setpoint or the cool setpoint (or none if the mode is
OFF) is returned.

Additionally, t_heat can be set only t_mode is HEAT and t_cool can only be set when t_mode is COOL. If
t_mode is not specified correctly, then the mode will be switched automatically.

The resources it_heat and it_cool behave similar to t_heat and t_cool respectively. The only difference being
these do not automatically switch the target mode as is done with t_heat and t_cool.

Depending on the thermostat model, some advanced modes may not be available.

Table 32: Differences between Thermostats

Feature CT-30 CT80 Rev A CT80 Rev B

Auto/Circulate Fan Operating
Mode (fmode is
AUTO/CIRCULATE)

Not Available Available Available

Automatic Thermostat Operating
Mode (tmode is AUTO)

Not Available Available Available

Number of Program Settings per
day (per mode – heat or cool)

4 7 7

Override status after setting a
temporary target using the HTTP
API (e.g. command in Sec 2.5.2
and Sec 2.5.4)

When override
status is read, it is
reported as 0. This
is a known issue in
thermostat
firmware.

Override is
reported back
correctly as 1.

Override is
reported back
correctly as 1.

Humidifier Not Available Available Available

De-humidifer and external
dehumidifier

Not Available Not Available Available

Program Mode Not Available Not Available Available

Lock Mode, Simple Mode, Save
Energy, Temperature Swing,
Night Light, Temperature
Differential, Stage Delay, Fan
Circulation Time, Time Format,
Air Baffle

Not Available Not Available Available

it_heat, it_cool, and ttarget
support in AUTO

Not Available Not Available Available

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 22

2.6.4 Differences in behavior with firmware version
This document is compatible with firmware version 1.04.82, or later. Please upgrade to this firmware version.

Apart from differences listed in the preceding sections of the document, there is one difference in the way the
firmware responds to any HTTP request. All the HTTP interactions (apart from upgrade) operate on JSON
encoded data. All the data being sent and received from the device will be in JSON format. For example, for
firmware versions prior to 1.04, a successful POST response is a string: “Tstat Command Processed”.
For firmware versions 1.04 and later, a successful POST response is also JSON encoded as follows:
“{"success": 0}”.

2.7 Success and Error Codes

2.7.1 Invalid URI
In response to Invalid URI requests a 404 HTML page redirecting back to the home page is returned.

2.7.2 Common Scenarios
All the operations return the following common success/error messages.

• For success
{ "success" : 0 }

Note1: In the firmware 1.04.64 or lower,

o a success is reported even when an invalid field is included in the POST request.

o a success is reported if multiple fields are POSTed and only a few of them are invalid.

Note2: In future releases of the firmware,

o if no valid field is specified an error would be returned.

o if multiple fields are POSTed, the return will be {"success":n} where n indicates the number of valid
fields in the request that were processed.

• For error
{ "error": -1 }

 (Most likely cause, if some field is missing in the POST data)
• For invalid URLs

{ "error_msg" : "Invalid HTTP API" }

2.7.3 Thermostat API Errors
There may be some transient errors when communicating with the thermostat firmware. When these errors
occur, the thermostat specific values are reported as -1. For example:

• { “tmode”: -1, “fmode”: 2, “temp”: -1, “hold”: 1}

In the above JSON string, there was an error while retrieving the values of tmode and temp.

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 23

3 Marvell Service Discovery Protocol

3.1 Introduction
The Marvell Service Discovery Protocol is a simple protocol designed to enable client programs to discover (web/http)
services offered by devices using Marvell Wireless Micro-controller solution. The protocol itself is modeled after the
Simple Service Discovery Protocol (SSDP), which was the basis for UPNP Service Discovery.

The description in this document is for service dis covery protocol version 1.

3.2 Specification

3.2.1 Message Types:
 Message
Type

 Description

 WM-
DISCOVER

 The WM-DISCOVER request is sent by a client to find services. The request is sent on
UDP multicast address 239.255.255.250 at port 1900. The message includes the services
that the client is interested in.

 WM-NOTIFY

 The WM-NOTIFY is a response to the WM-DISCOVER request when a device offers a
matching service. It’s a unicast UDP message to the sender of the WM-DISCOVER
request. The response message includes a list of the matching services that the device
offers along with the Base URI for each service.

 WM-
PRESENCE

 The WM-PRESENCE message is a multicast of the services offered by a device. This is
not yet implemented.

3.2.2 Protocol Version
The current service discovery protocol version is 1.0. This is included in all messages, and will enable protocol
upgrade in the future.

3.2.3 Services
Conceptually, a service is identified by a name and a location . The goal of the service discovery protocol is to
find the location of a service given its name. More specifically, a service definition includes the following fields.

 Field Description Mandatory/Optional

 Location

The service location is the URI at which the service is
located. The primary focus is on HTTP based services, so the
Location would be something like: http://<IP-
Address>/<Service-Prefix> that has the IP-address of
the device and the Service-Prefix for the URI's for the service.

Mandatory

Note

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 24

 Manufacturer
Qualified
Name

A service is identified by a name (string). In order to make the
services unique, we use the Reverse-DNS naming
convention to identify services - a convention that has been
used in Java (See: http://en.wikipedia.org/wiki/Reverse-DNS).

Optional, if device
qualified name is
present. Otherwise
mandatory.

 Device
Qualified
Name

This is an alternate service name (string) that can be used to
define a generic service that is not tied to a specific
manufacturer.

Optional, if manufacturer
qualified name is
present. Otherwise
mandatory.

 Manufacturer
Fingerprint
(ID)

The service can carry a manufacturer fingerprint (or ID) that
can be used by manufacturers to ensure a level of protection
and security.

Optional

3.2.4 Service Matching
Service discovery requests send a service name string that the client is interested in. The query may include a
"*" wild-card at the end of the string. A service match occurs:

• If the wildcard is used, then the service name prefix in the discovery request exactly matches with
the initial part of one of the service names.

• If the wildcard is not used, then the service name in the discovery request should match exactly
with one of the service names.

If the service request contains only the wildcard, without a prefix string, all the services available on the device
match.

3.2.5 Message Flow
■ A client that wants to discover WM services will send a discovery request to 239.255.255.250:1900

(UDP).

■ If a device with matching services is present, it sends a discovery response (unicast UDP
message)

■ Every thermostat device announces the availability of services on boot-up (start of services). (not
implemented yet)

■ Every thermostat device should also announce availability of services on starting network services.
Network services have to be stopped before entering deep sleep and restarted, if required, on
waking up from deep sleep. (not implemented yet)

3.2.6 Message Formats
 Message Type Message Format Notes

 WM-DISCOVER TYPE: WM-DISCOVER
VERSION: 1.0
SERVICES: <service-
request-string>

 The service request string may consist of one or
more service requests. Multiple requests are
treated as a request to match any one of the
services. Multiple requests are separated by a
comma (","). Any service request may have a "*"
at the end.

 WM-NOTIFY TYPE: WM-NOTIFY
VERSION: 1.0
SERVICE: <service-
name>
LOCATION: <location-
uri>

 There may be one or more
SERVICE/LOCATION pairs. One for each of the
matching services. If a service is described by
both a manufacturer and a device qualified name,
the two names will be separated by a semicolon
(";").

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 25

3.3 Limitations and Caveats
The protocol does not currently have any expiration information or announcements of termination of services.

3.4 Example Program to discover a service

3.4.1 Source Code

/*

 * Copyright (C) 2009-2010, Marvell International Ltd.

 * All Rights Reserved.

 */

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <net/if.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define MAX_BUF 4096

#define LOCATION_HDR "Location:"

#define SSDP_ADDR "239.255.255.250"

#define SSDP_PORT 1900

unsigned int quiet = 0;

char ip[16];

void parse_options(int argc, char *argv[])

{

 int i = 1;

 memset(ip, 0, sizeof(ip));

 while (i < argc) {

 if (!strcmp(argv[i], "--quiet"))

 quiet = 1;

 else if (!strcmp(argv[i], "--ip")) {

 snprintf(ip, sizeof(ip), "%s", argv[i + 1]);

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 26

 i++;

 } else

 printf("Ignoring unknown option %s\n", argv[i]);

 i++;

 }

}

int main(int argc, char *argv[])

{

 int sock, ret, one = 1, len, ttl = 3;

 struct sockaddr_in cliaddr, destaddr;

 struct timeval tv;

 char buffer[MAX_BUF] = "TYPE: WM-DISCOVER\r\nVERSI ON: 1.0\r\n\r\nservices:
com.marvell.wm.system*\r\n\r\n";

 char *token;

 int count = 0;

 struct ip_mreq mc_req;

 parse_options(argc, argv);

 /* Create socket */

 sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

 if (sock < 0) {

 printf("%s: Cannot open socket \n", argv[0]);

 exit(1);

 }

 /* Allow socket resue */

 ret = setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&one,

 sizeof(one));

 if (ret < 0) {

 printf("%s: Cannot prepare socket for reusing\n", argv[0]);

 exit(1);

 }

 /* Set receive timeout */

 tv.tv_sec = 3; /* 3 second timeout */

 ret = setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, (s truct timeval *)&tv,

 sizeof(tv));

 if (ret < 0) {

 printf("%s: Cannot set receive time out to the socket\n",
argv[0]);

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 27

 exit(1);

 }

 ret = setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TT L, (void *)&ttl,

 sizeof(ttl));

 if (ret < 0) {

 printf("%s: Cannot set ttl to the socket\n", argv [0]);

 exit(1);

 }

 /* construct a socket bind address structure */

 cliaddr.sin_family = AF_INET;

 if (strlen(ip) > 0)

 cliaddr.sin_addr.s_addr = inet_addr(ip);

 else

 cliaddr.sin_addr.s_addr = htonl(INADDR_ANY);

 cliaddr.sin_port = htons(0);

 ret = bind(sock, (struct sockaddr *)&cliaddr, size of(cliaddr));

 if (ret < 0) {

 printf("%s: Cannot bind port\n", argv[0]);

 exit(1);

 }

 /* construct an IGMP join request structure */

 mc_req.imr_multiaddr.s_addr = inet_addr(SSDP_ADDR);

 mc_req.imr_interface.s_addr = htonl(INADDR_ANY);

 /* send an ADD MEMBERSHIP message via setsockopt * /

 if ((setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHI P,

 (void*) &mc_req, sizeof(mc_req))) < 0) {

 perror("setsockopt() failed");

 exit(1);

 }

 /* Set destination for multicast address */

 destaddr.sin_family = AF_INET;

 destaddr.sin_addr.s_addr = inet_addr(SSDP_ADDR);

 destaddr.sin_port = htons(SSDP_PORT);

 /* Send the multicast packet */

 len = strlen(buffer);

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 28

 ret = sendto(sock, buffer, len, 0, (struct sockadd r *)&destaddr,

 sizeof(destaddr));

 if (ret < 0) {

 printf("%s: Cannot send data\n", argv[0]);

 exit(1);

 }

 /* quiet the noise */

 if (quiet == 0)

 printf

 ("Sent the SSDP multicast request and now wai ting for a
response..\n");

 while (1) {

 /* Wait for response */

 len = sizeof(destaddr);

 ret =

 recvfrom(sock, buffer, MAX_BUF, 0,

 (struct sockaddr *)&destaddr, &len);

 if (ret == -1) /* time out */

 break;

 count++; /* Valid response */

 /* Parse the response */

 token = strtok(buffer, "\r\n");

 while (token != NULL) {

 if (!strncasecmp(token, LOCATION_HDR, strlen(LOC ATION_HDR))) {

 printf("Found a wireless microcontroller, base URI: %s\n",

 token + strlen(LOCATION_HDR));

 break;

 }

 token = strtok(NULL, "\r\n");

 }

 }

 /* send a DROP MEMBERSHIP message via setsockopt * /

 if ((setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSH IP,

 (void*) &mc_req, sizeof(mc_req))) < 0) {

 perror("setsockopt() failed");

 exit(1);

 }

 March 22, 2012

Copyright @ 2012 Radio Thermostat Company of America 29

 if (quiet == 0)

 printf("Found %d device(s)\n", count);

 return 0;

}

3.4.2 Building and executing the sample program
Use wm_demo_discover.c to discover wireless microcontrollers on a network. This utility has the capability to
report multiple devices, if present on the network. Compile the above code using the following command:

gcc -o wm_demo_discover wm_demo_discover.c

wm_demo_discover can take options:

1. --quiet : Reports scriptable output. Without this, a verbose output is presented

2. --ip <ip-addr>: If you laptop has multiple interfaces, you can choose which network to multicast this
packet over using this option. The IP address that is specified should be the address of the
interface (wired or wireless) that is connected to the same wireless access point as the thermostat
that you are attempting to discover.

3. --search <search str>: The service to search for.

The thermostat devices can now be found using:

./wm_demo_discover --search "com.rtcoa.tstat*" --ip 192.168.1.103

Found a device, base URI: http://192.168.1.104/tstat

Found a device, base URI: http://192.168.1.107/tstat

